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Using density functional theory in the modified mean-field(MMF) approximation we study the phase
behavior of asymmetric binary mixtures of equisized dipolar hard spheres with different dipole moments in the
fluid phase regime. We focus on “dipole-dominated” systems where isotropic attractive interactions are absent.
Despite these restrictions our results reveal complex fluid-fluid phase behavior involving demixing and first-
and second-order isotropic-to-ferroelectric phase transitions the relative importance of which depends on two
“tuning” parameters, that is, the parameterG measuring the ratio of the dipolar coupling strengths, and the
chemical potential differenceDm controlling the composition. The interplay of these effects then yields three
different types of phase behavior differing in the degree to which demixing dominates the system. A generic
feature of the resulting diagrams is that the isotropic-to-ferroelectric transition is shifted towards significantly
higher densities compared to the one-component case, and is therefore destabilized. Furthermore, demixing in
the MMF approach turns out to be always accompanied by spontaneous ferroelectricity, which is in contrast to
recent integral equation and simulation results for the limiting case of a mixture of dipolar and pure hard
spheressG=0d.
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I. INTRODUCTION

Understanding phase properties of fluid mixtures whose
components carry permanent dipole moments is important in
various contexts. For example, molecular polar mixtures are
intrinsically interesting as solutes since their solvation prop-
erties can be tuned by varying the composition[1,2]. In order
to make use of these properties, however, it is vital to know
under which thermodynamic conditions the mixtures demix
and/or condensate. Another example are ferrocolloids[3,4]
which are usually polydisperse and can therefore be regarded
as(multicomponent) dipolar mixtures as well[5,6]. Depend-
ing on details of the colloidal stabilizing procedure and on
external conditions(e.g., presence of an external field), fer-
rocolloids can exhibit both condensation and demixing tran-
sitions, where the latter are particularly important as a
method to size separate the system. Despite these motiva-
tions, there are so far only few theoretical studies[7–9] on
the phase behavior of such mixtures, partly because the treat-
ment of the long-range anisotropic dipolar interactions in
computer simulations and other theoretical approaches is still
involved. Consequently, a more precise understanding of the
link between the mixture’s microscopic features such as pres-
ence of dipolar interactions of various strengths, van der
Waals-like forces, size asymmetry between the components,
etc., and the macroscopic phase behavior, e.g., the appear-
ance of a demixing transition, is still missing.

The purpose of the present work is to contribute to fill this
gap by an investigation of one of the most simple models for
a dipolar mixture, that is, a binary mixture of equisized di-
polar hard spheres(DHS) with different dipole moments(in

zero field). Choosing this somewhat minimalistic model,
which lacks any dispersive interactions or asymmetric steric
interactions due to different sizes of the spheres, thus permits
us to study directly the influence of dipolar interactions on
the mixture’s phase behavior. In fact, recent research onone-
componentDHS fluids(and related model systems) has dem-
onstrated that the long-range and highly anisotropic character
of dipolar interactions yields new, unexpected phase behav-
ior [10–14], including the possibility ofspontaneous polar-
ization in dense, strongly coupled DHS fluids[15–22]. In
view of these findings, central topics of the present study are
the appearance of such ferroelectric phases in two-
component fluids, and their interplay withdemixingtransi-
tions expected to take place for highly asymmetric mixtures.

We address these questions using density functional
theory in the so-called modified mean-field(MMF) approxi-
mation, where the pair correlation functiong is replaced by
the Boltzmann factor(contrary to simple mean-field theory,
whereg is set to one). The same ansatz has been previously
employed to study phase properties of one-component dipo-
lar fluids [19,20] and fluids with spin-dependent interactions
such as Heisenberg spin fluids[27]. Regarding the perfor-
mance of MMF theory for dipolar fluids, results obtained so
far [19–21,23–25] suggest that the theory does reproduce
main features of the phase behavior such as the appearance
of spontaneous polarization and the presence(absence) of
ordinary condensation transitions in pure Stockmayer(DHS)
fluids, whereas more subtle features such as dipolar chain
formation observed in computer simulation studies of highly
diluted dipolar systems[10–12,14] are not captured by the
approach. On the other hand, the great advantage of MMF
theory (compared to computer simulations or other liquid-
state approaches such as integral equation theories) is that it
is simple to apply and thereby allows to quickly scan phase
diagrams for large portions of the parameter space. Thus, the
approach seems to be particularly useful to get a first idea of
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the influence of different dipolar interactions on the mix-
ture’s phase behavior.

The rest of the paper is organized as follows. In Sec. II we
formulate our model and derive the MMF expression for the
free energy functional, focussing onfluid phases with isotro-
pic or orientationally ordered character(Sec. II A). The re-
sulting functional is a generalization of the corresponding
expression for pure dipolar systems derived earlier in Ref.
[19,20]. After defining conditions for phase equilibria(Sec.
II B ) we also present in Sec. II C an appropriate stability
analysis which allows us to locate critical lines of the mix-
ture. Results are presented in Sec. III where we start by
briefly recalling the one-component system and subsequently
discuss in Sec. III C different types of(density-temperature
and concentration-temperature) phase diagrams obtained for
dipolar mixtures. The topology of these diagrams turns out to
depend both on the interaction parameterG (which measures
the ratio of the dipolar coupling strengths) and on the chemi-
cal potential differenceDm controlling the composition. To
complete the picture we also present our results in the
density-concentration plane(Sec. III D), which turned out to
be a particularly useful representation to identify differences
between the various phase properties observed. Finally, our
conclusions are summarized in Sec. IV.

II. MODEL AND METHOD

We consider a binary mixture of two species(A andB) of
dipolar hard spheres with equal diameterss but different
dipole momentsmA and mB. The pair potential for two of
such particles at positionsr 1 and r 2 is given by

uabsr 12,v1,v2d = uhssr12d + uab
dipsr 12,v1,v2d, s2.1d

where r12= ur 12u= ur 2−r 1u is the particle separation,v
=su ,fd represents the orientation of a dipole in a spatially
fixed coordinate system, and the subscriptsa andb denote
the components consideredfasbd=A,Bg. The repulsive
hard sphere interaction and the dipolar interaction are
given by

uhssr12d = H`, r12 , s

0, r12 . s,
s2.2d

and

uab
dipsr 12,v1,v2d =

mamb

r12
3 †m̂sv1d · m̂sv2d

− 3fm̂sv1d · r̂ 12gfm̂sv2d · r̂ 12g‡, s2.3d

where m̂svd is a unit vector in direction ofv and r̂ 12

=r 12/ r12.
In the present work we limit ourselves to the treatment of

spatially homogeneous, but possibly orientationally ordered
phases. Solidlike structures or domain formation are thus ne-
glected and the singlet density of the system can be written
as

rasr ,vd = raaasvd, E dvaasvd = 1. s2.4d

In Eq. s2.4d aasvd is the orientational distribution function,
which is normalized to one. For isotropic states the orienta-
tional distribution is constant, that is,aasvd=1/s4pd. Devia-
tions from that value indicate the presence of orientational
order, which, for the states considered, can be expected to be
axially symmetric. As a result,aasvd can be expressed via an
expansion in Legendre polynomialsPl,

2paasvd = āascosud =
1

2
+ o

l=1

`

aa,lPlscosud, s2.5d

where the expansion coefficientsaa,l are connected to the
order parametersPa,l by

Pa,l =E
−1

1

dxāasxdPlsxd =
2

2l + 1
aa,l . s2.6d

With these definitions, the isotropic phase is specified by
Pa,lù1=0, i.e.,āasxd=1/2,whereas a phase with nematic ori-
entational order would be characterized byPa,l =0sÞ0d for
odd sevend l, i.e., āasxd=āas−xd. Finally, if Pa,l Þ0 for all l,
the system is in a ferroelectric phase.

A. Modified mean-field theory

The two main difficulties arising in theoretical treatments
of dipolar fluids are the angle dependence of the dipolar po-
tential on one hand, and it’s long-range character on the other
hand. In the present work we treat these problems in the
framework of a density functional approach, which is a gen-
eralization of an earlier study by Groh and Dietrich[19,20]
on one-component dipolar fluids.

We start by considering the free energyF=Fid+Fhs+Fdip

of the mixture which can be separated into the ideal gas part
sFidd, the hard sphere excess partsFhsd, and a part which
stems from the dipolar interactionsFdipd. The ideal part is
given by

Fid

V = o
a

ra

b
flnsraLa

3d − 1g + o
a

ra

b
E

−1

1

dxāasxdln„2āasxd…,

s2.7d

whereV is the volume,La is the thermal wavelength, and
b=1/kBT is the inverse temperature. The second term in Eq.
s2.7d accounts for the loss of entropy in anisotropic configu-
rationsfit vanishes forāasxd=1/2g.

As to the hard-sphere excess part, it is sufficient to use a
one-component approximation, since we are dealing solely
with equally sized species in this work. We choose the
Carnahan-Starling expression[26]

Fhs

V =
r

b

4h − 3h2

s1 − hd2 , s2.8d

where the packing fractionh=sp /6drs3 depends on the total
number densityr=rA +rB.

Finally, the dipolar contributionFdip is treated in the
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framework of themodified mean-fieldapproximation where
the pair distribution function is set to its low-density limit,
i.e.,

gabsr 12,v1,v2d = exp„− buabsr 12,v1,v2d…. s2.9d

With this simplification, one can derive analogous to the
one-component casef27–30g

Fdip = −
1

2b
o
ab
E dr 1dv1dr 2dv2rasr 1,v1drbsr 2,v2d

3exp„− buhssr12d…fab
dipsr 12,v1,v2d, s2.10d

where

fab
dipsr 12,v1,v2d = exp„− buab

dipsr 12,v1,v2d… − 1 s2.11d

is the Mayer function. To simplify the expression forFdip we
rewrite the dipole potential in rotationally invariant form,

uab
dipsr 12,v1,v2d =

mamb

r12
3 F̃112sv1,v2,v12d, s2.12d

wherev12 describes the orientation ofr 12, and

F̃112sv1,v2,v12d = − s4pd3/2Î 2

15
F112sv1,v2,v12d

s2.13d

is a rotational invariant, the general expression for which is
given by f31g

Fl1l2lsv1,v2,v12d = o
m1m2m

Csl1l2l ;m1m2md

3 Yl1m1
sv1dYl2m2

sv2dYlm
* sv12d.

s2.14d

In Eq. s2.14d, theCsl1l2l ;m1m2md are Clebsch-Gordan coef-
ficients andYlmsvd are spherical harmonics.

In order to express the Mayer function, Eq.(2.11), in ro-
tational invariants we employ a Taylor expansion in powers
of −budip, yielding

fab
dipsr 12,v1,v2d = o

n=1

`
1

n!
S− bmamb

r12
3 Dn

F̃112
n sv1,v2,v12d.

s2.15d

Inserting Eq.s2.15d and expressionss2.4d and s2.5d for the
singlet density into the MMF expression ofFdip s2.10d, it
can be written as a quadratic form in the density coeffi-
cients appearing in Eq.s2.5d, that is,

Fdip

V = o
ab

rarb o
l,m=0

`

ũab,lmaa,lab,m, s2.16d

with

aa,0 = 1/2, s2.17d

which is still exact within the MMF approximation. The
quantitiesũab,lm appearing in Eq.s2.16d are defined by

ũab,lm = o
n=1

`

ũlm
sndsmambdn, s2.18d

where theũlm
snd are temperature-dependent coefficients result-

ing from the integrals in Eq.s2.10d over thenth-order expan-
sion terms of the Mayer functionfcf. Eq. s2.15dg. Specifi-
cally, one has forn.1

ũlm
snd = −

1

2b

1

4p2n!
s− bdnE

s

`

dr12
1

r12
3n−2

3E dv1dv2dv12Plscosu1dPmscosu2d

3F̃112
n sv1,v2,v12d. s2.19d

The casen=1 requires special care, since the integrand of
ũlm

s1d contains the dipolar potential itself and is therefore long
ranged. As shown in a detailed analysis in Ref.f19g, the
result of this integration depends on the shape of the sample.
For the shape of interest here, that is, an ellipsoidal volume
inhibiting domain formation, the result of the integration is

ũ11
s1d = −

8p

27
. s2.20d

The remaining integrals in thesn.1d coefficientss2.19d can
be solved more straightforwardly. To this end one expresses
the Legendre polynomials in spherical harmonics

Plscosud =Î 4p

2l + 1
Yl0svd, s2.21d

and calculates thenth power ofF112 by applying the prod-
uct rule for rotational invariants(see Eq.sB8d in Ref. f19g)
iteratively. Using then the orthogonality of the spherical har-
monicsf31g and the relation

Csl1l20;000d = s− 1dls2l + 1d−1/2dl1l2
s2.22d

(see Eq.sA.157d in Ref. f31g), dl1l2
being the Kronecker sym-

bol, one finds that

ũlm
snd = 0, sl Þ md. s2.23d

As a consequence, the quadratic expression forFdip in Eq.
s2.16d becomes diagonal inl, that is,

Fdip

V = o
ab

rarbo
l=0

`

uab,laa,lab,l , s2.24d

where

uab,l = o
n=1

`

ul
sndsmambdn, s2.25d

and theul
snd are given by Eq.s2.19d with l =m.

In practice one has to truncate the expansion(2.15) of the
Mayer function at a finite valuenmax. A truncation atnmax
=1 would imply that the expansion of the Mayer function
reduces to the linear term, i.e., to the dipolar potential itself.
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One can show that this corresponds to the usual mean-field
approximation[27] where the pair distribution functiong is
set to one(and, consequently,aa,l.1=0). However, the major
drawback of this approximation(in contrast to themodified
mean-field approximation) is that the dipolar contribution
Fdip to the free energy vanishes for isotropic phases, which is
clearly unphysical. In this work we choosenmax=4, the nu-
merical values of theul

snd for l ,nø4 are given in Table I.

B. Equilibrium configurations and phase equilibria

In order to locate phase coexistences it is generally more
convenient to employ the grand canonical ensemble involv-

ing the chemical potentialsma (instead of the densitiesra) as
thermodynamic variables. The grand free energy density
functional is given by

V

V =
Fid + Fhs

V + o
ab

rarbo
l=0

`

uab,laa,lab,l − o
a

mara.

s2.26d

V becomes minimal for the equilibrium configuration
fra,āasxdg corresponding to the setsma,T,Vd. This principle
leads to the following Euler-Lagrange equations for the sin-
glet densities

] sV/Vd
] ra

= 0,
dsV/Vd

dāasxd
= 0. s2.27d

Employing now the functionals2.26d, the first member of
Eq. s2.27d yields the conditions

]

] ra
SFid + Fhs

V D + 2o
b

rbo
l=0

`

uab,laa,lab,l − ma = 0.

s2.28d

The minimization with respect to the orientational distribu-
tion āasxd has to be performed obeying the norm condition in
Eq. s2.4d. Solving the resulting expression with respect to the
orientational parametersaa,l one obtains

aa,l =
2l + 1

2

E
−1

1

dxPlsxdexpF− o
b

brbo
i=1

`

s2i + 1duab,iab,iPisxdG
E

−1

1

dx expF− o
b

brbo
i=1

`

s2i + 1duab,iab,iPisxdG . s2.29d

The coupled equationss2.28d and s2.29d can be solved nu-
merically by employing a multidimensional Newton-
Raphson algorithm, yielding the equilibrium configuration
for given sma,T,Vd. In order to identifycoexisting statesat
given chemical potentialsmA and mB, we combine Eqs.
s2.28d and s2.29d with a further equation reflecting that the
pressuresp=−VeqsmA ,mB,Td /V=−Vfra

eq,āa
eqsxdg /V of both

states have to be equal as well.

C. Critical line

In their MMF study of the phase behavior of one-
component dipolar fluids, Groh and Dietrich[19] have
shown that these systems exhibit at sufficiently high tem-
peratures a critical linerfcsTd at which the system undergoes
a second-order transition from an isotropicsr,rfcd into a

ferroelectricsr.rfcd state. Based on these results we expect
similar behavior to occur as well in our dipolar mixtures,
where, however, the critical line will also depend on the
composition. In order to get an analytical expression for this
critical line we expand the orientational part of the free en-
ergy,

DF

V = o
a

ra

b
E

−1

1

dxāasxdln„2āasxd… + o
ab

rarbo
l=1

`

uab,laa,lab,l ,

s2.30d

for small deviations from the isotropic state, i.e., smallaa,l.
A Taylor expansion of the entropic part ofDF /V up to sec-
ond order yields

TABLE I. Numerical values of theul
snd for l ,nø4

n=1 n=2 n=3 n=4

l =0 0 −
8p

3

b

3s3 0 −
8p

25

b3

9s9

l =1 −
8p

27
0

−
16p

225

b2

6s6 0

l =2 0 −
8p

375

b

3s3 0 −
32p

6125

b3

9s9

l =3 0 0
16p

257 25

b2

6s6 0

l =4 0 0 0 −
8p

992 25

b3

9s9
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o
a

ra

b
E

−1

1

dxāasxdln„2āasxd…

= o
a

ra

b
E

−1

1

dxS1

2
+ o

l=1

`

aa,lPlsxdD
3lnS1 + 2o

l=1

`

aa,lPlsxdD
= o

a

ra

b
o
l=1

` S 2

2l + 1
Daa,l

2 + ¯ , s2.31d

where we used the expansions2.5d of the orientational dis-
tribution function, the expansions1/2+jdlns1+2jd=j+j2

+Osj3d, and the orthogonality of the Legendre polynomi-
als. The dots in Eq.s2.31d stand for higher order terms.
Using Eqs.s2.30d and s2.31d DF /V can be rewritten as

DF

V = o
l=1

`

o
ab

sM ldabaa,lab,l , s2.32d

where the elements of the symmetric matricesM l are defined
by

sM ldab = rarbuab,l + dab
ra

b
S 2

2l + 1
D sl ù 1d. s2.33d

For the following analysis it is more convenient to rewrite
the sM ldab in terms of the total densityr=rA +rB and the
concentrationscA =rA /r, cB=rB/r=1−cA. This yields

M l =1r2cA
2 uAA, l +

2

2l + 1

rcA

b
r2cAcBuAB,l

r2cBcAuBA,l r2cB
2uBB,l +

2

2l + 1

rcB

b
2 .

s2.34d

The rigorous condition for the isotropic configuration to be
stable is thatM l is positive definitefi.e., both eigenvalues
lisi =1,2d are positiveg for every l. However, our numerical
analysis has shown that it is in fact enough to consider only
the “leading” matrixM 1, since theM l.1 are always positive
definite as long as this is true forM 1. As a consequence, the
condition for criticality is that M 1 becomes positive
semidefinite, i.e.,

l1 = 0, l2 . 0. s2.35d

Applying this criterion to the matrix at handfcf. Eq. s2.34d
with l =1g one finds that an asymmetric mixturesG,1dd
with given concentration 0,cA ,1 and given temperatureT
orders spontaneously at densities above the critical density

rcrit =
− 2

3scAuAA,1 + cBuBB,1d − 2
3
ÎscAuAA,1 + cBuBB,1d2 − 4cAcBsuAA,1uBB,1 − uAB,1

2 d
2bcAcBsuAA,1uBB,1 − uAB,1

2 d
. s2.36d

The limiting casescA →1 spureA fluidd andcA →0 spureB
fluidd have to be treated with special care, since both nomi-
nator and denominator in Eq.s2.36d vanish if cA =0,1 si.e.,
cB=1,0d. However, applying the rule of de l’Hospital to Eq.
s2.36d yields

rcrit = −
2/3

bcAuAA,1 + bs1 − cAduBB,1
, scA → 0,1d,

s2.37d

which is equivalent to the known result Eq.s7.10d in Ref.
f19g. For the other limiting case, that is, mixtures withG
=1 sand thereforeuAA,1 =uAB,1=uBB,1d, condition s2.35d di-
rectly leads to the one-component case, regardless of the
concentrationcA.

Additional information on the mixture’s behavior at the
critical line can be obtained via an analysis of the eigenvec-
tors ofM 1 directly atrcrit. Under these conditions, the eigen-
vector a=saA,1,aB,1dT associated to the vanishing eigen-
valuel (which causes the determinant to go to zero) is given
as

a = S− sM 1dAB

sM 1dAA
D . s2.38d

Interpretingl as a vanishing “restoring force” against fluc-
tuations with directiona f32,33g, it follows that this direc-
tion can give information on thecharacterof the phase tran-
sition in the space of order parameters. In that sense one
concludes from Eq.s2.38d that while crossing the critical
line, the system will order such that the leading order param-
etersaA,1 andaB,1 are coupled by

aB,1

aA,1
=

PB,1

PA,1
=

sM 1dAA

− sM 1dAB
. s2.39d

Inspection of the matrix elements at the critical line shows
that sM 1dAB is always negative whereassM 1dAA is positive.
Therefore, Eq. s2.39d implies that the isotropic-to-
ferroelectric transition in our dipolar mixtures is always
characterized by a parallel ordering saB,1/aA,1

=PB,1/PA,1.0d of both species, with the ratio between the
order parameters given by Eq.s2.39d.
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III. RESULTS

A. Reduced quantities

In order to characterize the phase behavior of the system
we use the following reduced quantities: the temperature
T* =kBTs3/mA

2 , measuring thermal energy versus the dipolar
pair energy for two tangent spheres of speciesA in a parallel
side-by-side configuration, the densitiesra

* =ras3 and the
chemical potentials −ma

* = lnsLa
3/s3d−bma. The total reduced

density and the concentration of speciesA then follow as
r* =rA

* +rB
* andcA =rA /r. Finally, the different dipolar cou-

plings in the mixture are specified by the parameterG
=mB

2 /mA
2 , measuring the ratio of the dipolar coupling

strengths within speciesA andB, respectively. It is sufficient
to consider mixtures with 0øGø1 (the behavior at largerG
then simply follows from interchangingA andB).

B. Background: The one-component case

Before considering dipolar mixtures it is instructive to
briefly discuss the MMF phase behavior of one-component
dipolar hard-sphere fluids(previously obtained in Ref.
[19,20]). Results are shown in Fig. 1 where the full lines
combined with the upper dotted line correspond to the phase
diagram of a pureA fluid in the density-temperature plane.
Disregarding any solid structures(which are not captured by
the present approach) there are two phases involved, an iso-
tropic gas (IG) with zero orientational order parameters
saA,l.1=0d appearing at low and intermediate densities and a
ferroelectric liquid(FL) with aA,l.1.0 appearing at higher
number densities. Below the temperatureTTCPA

* related to the
tricritical point (TCP) of the pureA fluid, the transition be-
tween the isotropic and the ferroelectric phase is character-
ized by large jumps both in density(see gray regions in Fig.
1) and in the order parametersaA,l.1. IncreasingT* towards
TTCPA

* , the differences between coexisting phases vanish, and
for temperatures aboveTTCPA

* the transition from the isotro-

pic to the ferroelectric fluid is continuous in all order param-
eters, resulting in acritical line as described by Eq.(2.37)
for cA →1.

It may be noted that the MMF theory does not capture the
full fluid phase behavior in the sense that dipolar chain and
network formation processes observed in computer simula-
tion studies of dilute, strongly coupled dipolar systems
[10–12,14] do not appear. On the other hand, a feature cor-
rectly reproduced by the MMF theory is the absence of an
ordinary condensation transition between an isotropic gas
and an isotropic liquid in dipolar hard sphere systems with-
out any additional(isotropic) attractive interactions[13,14].
Finally, the spontaneously polarized fluid phases as predicted
by the MMF theory have also been observed in computer
simulations[15–18], and integral equation studies[22], even
though a comparison of ferroelectric transition temperatures
indicates that the MMF theory seriously overestimates the
tendency for long-range ferroelectric order(as one might
have expected).

Since phase diagrams in the density-temperature plane are
easy to understand we will employ this type of representation
also in our discussion ofmixturesof A andB particles with
interaction ratioG. The density axis will then be thetotal
densityr* of the system. In order to control thecomposition
of the mixture, say, the concentration ofA particlescA, we
will employ the difference between the chemical potentials,
specifically the parameterDm* ;mB

* −mA
* . In this way the

limit Dm* →−` corresponds to a situation whereB particles
are completely expelled from the system at all temperatures
(cA =1 andr* =rA

* ), yielding the density-temperature phase
diagram of a pureA fluid shown in Fig. 1. The opposite
behavior is found in the limitDm* →` where cA =0 (i.e.,
r* =rB

* ) at all temperatures and the phase diagram reduces to
that of a pureB fluid. The latter is indicated by the dashed set
of lines in Fig. 1. The phase diagram and specifically the
reduced tricritical temperatureTTCPB

* of a pureB fluid can be
obtained byscaling the temperatures of theA system by a
factor of G: since buAA

dipsr 12,v1,v2d=sb /GduBB
dipsr 12,v1,v2d,

a configurationfr ,āsxdg will be stable for a pureB fluid at a
temperatureGT* , if it is a stable configuration for a pureA
fluid at the temperatureT* .

C. True mixtures

As reasoned in Sec. III B the chemical potential differ-
enceDm* can be used as a “tuning” parameter controlling the
change of the density-temperature phase diagram of a dipolar
mixture with fixed G from the pureA to the pureB case
sDm* → ±`d. Investigating now “true” dipolar mixtures with
finite values ofDm* for a range of interaction parameters 0
øGø1 it turns out that one can distinguishthreeregimes of
G, which differ in the types of phase behavior encountered
by the systems on their way fromA to B. Characteristic
features of each regime are discussed in the following para-
graphs for exemplary values ofG. For reasons discussed
above we start by considering phase diagrams in the density-
temperature(and concentration-temperature) plane. In order
to better understand the “global picture,” however, we

FIG. 1. Phase diagrams of two(decoupled) one-component flu-
ids with interaction ratioG=0.75 in the density-temperature plane
sT* =kBTs3/mA

2 ,r* =rs3d. For explanation of the lines and sym-
bols, see main text.
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present in Sec. III D additional diagrams in the density-
concentration plane.

1. G=0.75: Tricriticality for every cA

The caseG=0.75 is typical for systems where the dipolar
coupling strengths within and in between theA andB species
are still quite similar. IncreasingDm* from its lower limit −̀
(pure A fluid), one encounters at first the phase behavior
displayed in the two parts of Fig. 2. Values of the densities
related to coexisting and critical states[see left-hand side
(lhs) of Fig. 2] are still very similar to the pure case, and the
only significant feature identifying the system as a mixture is
the appearance of small changes ofcomposition at the
isotropic-ferroelectric transition. The amount of these
changes can be seen from the right-hand side(rhs) of Fig. 2
displaying the values of the parametercA related to coexist-
ing and critical states. Due to the small values ofDm* both
coexisting phases are clearly dominated byA particlesscA

@0.5d, but the phase even more saturated inA is the ferro-
electric phase. This is due to the stronger dipolar coupling
betweenA particles and the higher density of the ferroelec-
tric phase. Both effects yield a stronger effective(mean)
field. The typical behavior of the leading orientational order
parametersPA,1 andPB,1 upon crossing a critical line is dis-
played in Fig. 3 for an exemplary temperature. Clearly, the
two order parameters have the same sign, which is consistent
with the analysis in Sec. II C and implies that the two species
orderparallel. From a physical point of view, we understand
this feature as a consequence of the “cross” effective field
experienced by the(more weakly coupled) B particles as
soon as theA particles start to order. The other curve in this
figure represents the behavior of the concentrationcA, show-
ing that the composition of the mixture variescontinuously
(as does the total density) when the system enters the ferro-
electric state.

Changes in the phase diagrams induced by further in-
crease of the chemical potential difference, i.e., by a stronger
and stronger favoring of the(more weakly coupled) B spe-
cies are depicted in Figs. 4 and 5, respectively. Specifically,
from Fig. 4 it is seen that the general topology involving two

fluid phases is kept as long asDm* is not too high. The main
effect of changingDm* in this regime is that the temperature
related to the TCP monotonically decreases, accompanied by
a decrease of the corresponding values ofcA and an increase
of the composition differences between coexisting phases be-
low TTCP

* . Only at very high(but still finite) values ofDm*

(Fig. 5) one encounters a new topology involving, in addition
to the TCP, acritical point (CP) separating two ferroelectric
phases with different densities. However, as seen from the
rhs of Fig. 5 the most significant difference between the co-
existing phases is in fact the large gap in the composition.
We thus can conclude that the phase transition within the
ferroelectric fluid state is essentially ademixing transition,
driven by high values ofDm* which favors theB species so
strongly that coexistence of a B-rich ferroelectric liquid
(FLB) with an even denserA-rich ferroelectric liquidsFLAd
becomes possible.

FIG. 2. Phase diagrams of a dipolar hard-sphere mixture with
interaction ratioG=0.75 and chemical potential differenceDm*

=−2.0 in the density-temperature plane(left) and the concentration-
temperature plane(right).

FIG. 3. Polarization order parameters and composition as func-
tions of mA

* upon crossing the critical line(G=0.75, Dm* =−2.0,
T* =0.65.TTCP

* ). The upper dashed line shows the numerically ob-
tained values for the ratioPB,1/PA,1, which coincides at the critical
line with the analytically obtained value(see circle) from Eq.
(2.39).

FIG. 4. Same as Fig. 2, but forDm* =3.0. The density-
temperature diagram contains the results for the pureA fluid as a
reference.
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It is clear that the demixing CP must disappear again
when Dm* is pushed towards even higher values where the
behavior of the mixture approachesper definitionemthat of
the pureB fluid. Practically, this happens such that the tem-
perature of the triple pointsIGd-sFLBd-sFLAd moves towards
smaller and smaller values, while the densities of the coex-
istencesFLBd-sFLAd are getting higher and higher and even-
tually leave the fluid phase regime. Finally the density-
temperature phase diagram of the pureB fluid involving only
a TCP results(cf. Fig. 1).

2. G=0.60: Appearance of critical end points

We now turn to more asymmetric mixtures with smaller
coupling ratios, taking the caseG=0.60 as an example. Start-
ing again from the pureA fluid and increasingDm* one finds
at first phase diagrams containing only a TCP(IG)-(FL),
similar to those depicted in Figs. 2 and 4 for the case of
mixtures with more symmetric dipolar couplings. Contrary
to the latter systems, however, where further increase ofDm*

yields simultaneous appearance of both a TCP and a(demix-
ing) critical point FLA-FLB at substantially higher densities
(cf. Fig. 5), increase ofDm* at G=0.60 favors the demixing
tendency so strongly that a CPFLB-FLA

develops at tempera-
tures and densities in theimmediate vicinityof the TCP. As a
result, the TCP becomesunstableand eventually changes
into acritical end point(CEP) where the ferroelectric critical
line meets thesIGd-sFLAd coexistence at temperatures below
the CP. Density-temperature phase diagrams corresponding
to the scenario immediately before and after the transforma-
tion of the TCP into a CEP are displayed in the lhs of Fig. 6.
The concentration diagram on the rhs moreover shows that
the sIGd-sFLAd transition at temperatures aroundTCEP in-
volves large jumps in thecomposition. This again identifies
the appearance of a CEP plus a CP within the ordered phase
as a phenomenon, which is rather driven by the combined
tendencies of the system to order ferroelectrically and to de-
mix, than by its tendency to just condensate at low tempera-
tures.

In this context it is worth to note that a similar phase
behavior involving a CEP plus a critical point athighernum-
ber densities has been observed for other complex fluids
where “ordering” tendencies dominate the phase behavior.
Examples are the paramagnetic-ferromagnetic CEP(plus a

magnetic CP) observed in a Heisenberg spin fluid with
purely repulsive spherical interactions[27,34], and spatially
confined symmetric binary square-well mixtures where the
presence of walls stabilizes demixing transitions[36].

Given the disappearance of the TCP in favor of a CEP
(Fig. 6) it is interesting to see how the system’s phase behav-
ior changes back to that of the pureB system(involving only
a TCP) upon further increasing ofDm* . An intermediate situ-
ation encountered on this way is presented in Fig. 7. It is
seen that the demixing CP has now moved to densities out-
side the range typical for fluid states, such that the density-
temperature diagram displayed in Fig. 7 contains only first-
order sFLBd-sFLAd transitions. Moreover, the CEP has
changed back into a TCP, yielding again atriple point
sIGd-sFLBd-sFLAd. Further increase of chemical potential dif-
ferences yields smaller and smaller triple point temperatures
(see the dashed lines in Fig. 7 as an example) and finally the
phase diagram of the pureB fluid.

3. Strongly asymmetric mixtures: Nonmonotonic behavior
of (tri)critical points

From a topological point of view, mixtures with smaller
coupling ratiossGø0.5d were found to display essentially

FIG. 5. Same as Fig. 2, but forDm* =8.0. FIG. 6. Phase diagrams forG=0.60 andDm* =3.0. The inset on
the lhs additionally contains the density-temperature diagram at
Dm* =1.3.

FIG. 7. Same as Fig. 6 but forDm* =8.0. The dashed lines on the
lhs correspond to the density-temperature diagram at an even higher
value ofDm* =10.0.
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the same types of phase diagrams already discussed in the
two previous paragraphs. However, closer inspection reveals
some subtle, yet significant differences, the first of which
occurs already atG=0.40 and concerns theDm* dependence
of the tricritical temperature. We recall that for the more
symmetric mixtures,TTCP

* monotonicallydecreaseswhen the
chemical potential difference is increased away from its lim-
iting value −̀ (i.e., the pureA fluid). This monotonic de-
crease is intuitively clear since the dipolar coupling within
the B component is weaker, yielding a smaller and smaller
tendency for ferroelectric ordering of the overall mixtures
with increasingDm* . Having in mind this picture it is par-
ticularly surprising that, forG=0.40, the temperature related
to the TCP at firstincreaseswhenB particles are added to the
mixture. This can be see from the density-temperature dia-
grams on the lhs of Fig. 8 and also from Fig. 9 where the
Dm* dependence of the TCPs(or CEPs, respectively) is dis-
played for allG regimes. Figure 9 additionally shows that, at
G=0.40, the tricritical temperature only starts to decrease
again after the TCP has changed into a CEP. Similar behavior

of the TCP/CEP temperature occurs for the most asymmetric
mixtures considered, characterized by an interaction ratioG
=0.30[cf. Fig. 9]. We note, however, that for an intermediate
range ofDm* the TCP/CEP appears at densities faroutside
the range of densities where one would expect fluid phases to
be stable(and this is even more true for the densities related
to demixing CPs). Specifically, given that both species in the
present mixtures have the same diameter and given[16] that
one-component fluids of DHS freeze at densities comparable
to those of pure HS systems[36], i.e.,r* <0.95, one expects
similar freezing densities for the present mixtures. An exem-
plary MMF phase diagram(where solid phases are not taken
into account) for a highly asymmetric mixture is depicted in
Fig. 10, showing that tricriticality occurs at unphysical fluid
densities in the vicinity of the close-packing limit. We can
therefore expect that true mixtures of this type would display
only first-order fluid-fluid transitions, with exceptions ap-
pearing at very large or very small values ofDm* (i.e., close
to the pure cases).

D. The global picture

In order to round off our discussion of the MMF results
we finally present some alternative representations of the
phase behavior. Although these contain, of course, essen-
tially the same information as do the two-dimensional phase
diagrams displayed in Sec. III C, we found the additional
diagrams displayed below particularly helpful in order to
elucidate the differences of the mixture’s phase behavior at
different values ofG.

We start with Fig. 9 which has been already referred to at
the end of Sec. III C and shows theDm* dependence of the
temperature related to the TCP(or CEP, respectively) for all
three G regimes. For the more symmetric mixtures corre-
sponding toG=0.75 andG=0.60 this temperature monotoni-
cally decreaseswith increasingDm* , i.e., with increasing
concentration ofB particles, as expected due to their weaker
dipolar coupling. The difference between these scenarios
then consists in the absence or presence of a transformation
TCP↔CEP at intermediate values ofDm* [cf. Secs. III C 1
and III C 2]. On the other hand, the more asymmetric mix-
tures (G=0.4 and 0.3), which tend to demix more strongly,

FIG. 8. Phase diagrams forG=0.40 andDm* =1.0. Ther* -T*

representation(left) contains the results forDm* =−` (pureA fluid)
as a reference.

FIG. 9. Temperatures related to the tricritical points(or critical
end points) of the mixtures as functions of the chemical potential
difference for various values ofG. Solid (dashed) parts of the lines
correspond to TCPs(CEPs).

FIG. 10. Phase diagrams forG=0.30 and Dm* =1.25. The
r* -T* diagram (left) contains the results for a pureA fluid as a
reference.
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are characterized by a somewhat counterintuitive behavior of
the tricritical temperature in the sense thatTTCP

* first raises
and starts to decrease only after the TCP has changed into a
CEP. The difference between these mixtures is then purely
quantitative in the sense that atG=0.3 tricritical (and any
other critical) behavior occurs at densities outside the fluid
phase regime.

Besides the different behavior ofTTCP/CEP
* , a further fea-

ture distinguishing the various mixture’s phase behaviors is
the topology and shape of the “three-dimensional” phase dia-
grams generated by plotting the(total) densitiesr* and con-
centrationscA corresponding to coexisting states of a given
system (fixed G) at various temperatures. Examples are
shown in Figs. 11–14. Solid lines are the two-phase coexist-
ence lines(generated by varyingDm* at fixed T*), whereas
the dashed lines denote values ofr* and cA related to the
TCP/CEP. As a consequence, the crossing of these lines with
the horizontals atcA =1 and cA =0 indicates the tricritical
densities of a pureA or B fluid. We also note that, for eachG,
states on the rhs(lhs) of the dashed line in Figs. 11–14 cor-
respond to ferroelectric(isotropic) states.

We start again with the Fig. 11 corresponding to nearly
symmetric mixturessG=0.75d. It is seen that, for a broad
range of densities and temperatures, the first-order isotropic-
ferroelectric transition involves changes mainly in the den-
sity rather than incA (as shown exemplarily by the coexist-
ing states denoted by the pair of triangles in Fig. 11) whereas
demixing only comes into play at very high values ofr*

(squares in Fig. 11). As a result, the line of tricritical points,
which are characterized by significantly smaller densities
than those associated to the demixing CP, remains essentially
unaffected by the demixing transitions. This obviously
changes when going to smaller interaction ratios where de-
mixing becomes more favorable, as reflected in Fig. 12 both
by the appearance of a CEP and by the(compared to Fig. 11)

smaller densities and higher temperatures associated to the
demixing critical points. Considering now even more asym-
metric systems[cf. Fig. 13] one observes a yet new feature in
the density-concentration diagram, namely aclosedcoexist-
ence loop at a temperatureT* =0.633. Even though this tem-
perature is higher thanTTCPA

* the system still possesses a
TCP. The appearance of the loop can be explained as fol-
lows: holding the temperature fixed and increasingDm* from
DmTCP

* one observes at first the development of asIGd-sFLd
coexistence(see pair of triangles), implying that the TCP
must have moved towards higher temperatures. After the
transformation TCP↔CEP thesIGd-sFLd coexistence then
changes into asFLBd-sFLAd coexistence, as indicated by the
pair of squares in Fig. 13. Upon further increase ofDm* the

FIG. 11. Density-concentration phase diagram for a mixture
with G=0.75 at various temperatures. The pair of triangles(squares)
denotes coexisting states atT* =0.50/Dm* =1.0sT* =0.32/Dm*

=10.0d. For further explanations, see main text.

FIG. 12. Same as Fig. 11 but forG=0.60.

FIG. 13. Same as Fig. 11 but forG=0.40. The pair of triangles
(squares) denotes coexisting states atT* =0.633 and Dm*

=1.0sDm* =1.75d.
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coexistence region finally closes at the demixing critical
point. Therefore the appearance of such loops in the density-
concentration diagrams just reflects nonmonotonic behavior
of TTCP

* upon varyingDm* (see discussion of Fig. 9). From
this it is clear that the corresponding diagram for the most
asymmetric mixtures considered heresG=0.3d should, in
principle, also contain islands but it turns out that these are
outside the physically meaningful density range(see dis-
cussion in Sec. III C 3). As a result one obtains a diagram
dominated by first-order demixing transitions as displayed in
Fig. 14.

IV. CONCLUSIONS

In this work we have explored the fluid-fluid phase behav-
ior of asymmetric binary dipolar model mixtures in the
framework of density functional theory in the modified
mean-field (MMF) approximation. Phase diagrams have
been obtained by minimizing the resulting free energy func-
tional both for isotropic and for orientationally ordered fluid
phases, supplemented by an appropriate stability analysis in
order to locate critical lines. Despite the simplicity of our
model system, where the two species differ only in their
dipole moments, the resulting phase behavior turns out to be
significantly richer than that of the one-component counter-
part. One of the most surprising results was that eventiny
differences between the dipole momentssG=mB

2 /mA
2 →1d re-

sult in the appearance ofdemixingtransitions between two
fluid phases of strongly different compositions, as signalled
by the presence of a demixing critical point(CP). Whereas
the corresponding densities are somewhat artificial(i.e., ex-
tremely high) as long asG is close to one, decrease ofG

more and more favors demixing until finally the correspond-
ing CP appears at densities deep within the fluid phase re-
gime. We stress, however, that these demixing CPs appeared
always within the ferroelectrically ordered region, indicating
that—within the MMF theory—asymmetric dipolar cou-
plings alone are not enough do induce demixing already in
the isotropic phase. In fact, we did not even find isotropic
demixing transitions for the most asymmetric systems, that
is, mixtures of dipolar and pure hard spheressG=0d. This
finding is in contrast to recent integral equation[32,37] and
computer simulation studies[38], which indicates that isotro-
pic demixing in dipolar/hard-sphere mixtures without any
dispersive interactions is essentially acorrelational effect
and in that sense far from being trivial. Given the discrep-
ancy atG=0 one also concludes that the present MMF predi-
cations on the nature of demixing transitions atfinite G.0
need to be carefully tested against simulations or other more
sophisticated theoretical approaches. Work in this direction is
currently in progress.

Beyond demixing, the other major effect of decreasingG
in our MMF study is a significant shift of the isotropic-to-
ferroelectric transition towards lower temperatures and/or
larger densities relative to the one-component case. This sug-
gests that spontaneously polarized phases in dipolar systems
generally become stronglydestabilizedby nonuniformity in
the dipole moments. In fact, a similar observation has also
been made in a recent Monte Carlo study[7] where the de-
gree of spontaneous polarization in strongly coupled dipolar
hard-sphere mixtures with different dipole moments has
found to be much smaller than in the pure system. In Ref.
[7], no attempt has been made to determine the actual tran-
sition temperatures of the dipolar mixtures, but given the
mean-field character of our theory we would expect the
MMF predictions to be highly overestimated. Still, in view
of the agreement on a qualitative level and given that calcu-
lations on the MMF level are much less time consuming, we
feel encouraged to employ the present theory also to inves-
tigate other dipolar mixtures such as “binary ferrocolloids”
with particles differing not only in their dipole moments, but
also in their sizes. We note that the present approach could
also be applied to other mixtures with angle-dependent inter-
actions such as Heisenberg fluid mixtures or simple liquid
crystal models. In fact, given the similarity of the results
obtained within the MMF theory for single component
Heisenberg[27] and dipolar fluids[19,20], we would expect
the Heisenberg mixtures to display analogous features as we
have found here, such as demixing transitions and destabili-
zation of orientationally ordered phases.
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FIG. 14. Same as Fig. 11 but forG=0.30.
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